

Towards the Protection of Industrial Control Systems – Conclusions of a Vulnerability Analysis of Profinet IO

Andreas Paul, Franka Schuster, Hartmut König

19.07.2013

Brandenburg University of Technology Cottbus, Cottbus, Germany

10th Conference on Detection of Intrusions and Malware & Vulnerability Assessment (DIMVA 2013)

Introduction: Industrial Control Systems (ICS)

» ICS network

- » heterogeneous devices
- » special requirements on information technologies
 - » reliability and availability
 - » real-time capability
- » problem: missing security measures

» Intrusion Detection for ICS networks

- » passive analysis of Ethernet-based network traffic
- » analysis technique: anomaly detection
- » supporting industrial communication protocols

PROFINET IO: Basics

» Device roles:

» IO-Supervisor: engineering station

» IO-Controller: PLC

» IO-Device: peripheral devices

» From configuration to data transmission:

- 1. configuration
- transmission of configuration data
- 3. name assignment
- 4. IP address assignment
- 5. set up of application relation
- 6. data transmission

PROFINET IO: Protocol sequences (1/2)

System Start-Up

PROFINET IO: Protocol sequences (2/2)

Operating stage

» acyclic data transfer

- » request / response
- » alarms, diagnostics, reconfiguration

» cyclic data transfer

- » provider / consumer
- » Out-Data: process control, process regulation
- » In-Data: process data

Cyclic data transfer

PROFINET IO: Protocol-specific attacks (1/4)

» Attack scenario

- » attacker: compromised PROFINET IO device or additional network device
- » performs attacks by interfering regular protocol sequences
- » requirement: knowledge about network topology
 - » DCP: device polling via DCP_Identify_All_Request
 - » LLDP/SNMP: collecting device and topology information via SNMP

» Attack classification

	Denial-of-Service	Man-in-the-Middle
Device name assignment	X	
IP address assignment	X	X
Cyclic data transfer		X

PROFINET IO: Protocol-specific attacks (2/4)

Denial-of-Service

PROFINET IO: Protocol-specific attacks (3/4)

Man-in-the-Middle: IP address assignment

PROFINET IO: Protocol-specific attacks (4/4)

Man-in-the-Middle: cyclic data transfer

Intrusion Detection for Industrial Control Systems (1/4)

Classification

» Information source

- » host-based: analysis of data acquired from hosts (e. g. system calls)
 - → requires additional resources of the hosts to be protected
- » network-based: analysis of network traffic (packet header, payload)
 - → enables passive analysis

» Analysis concept

- » misuse detection: detection of **known attacks** described by patterns
 - > requires detailed knowledge about attack and protocol functionality
- » anomaly detection: detection of deviations from model of normal behavior
 - → promising: high degree of traffic homogeneity within ICS networks

Intrusion Detection for Industrial Control Systems (2/4)

Attack scenario

» IO-Controller / IO-Device

» performing regular system start-up and cyclic data transfer

» Attacker

- » interferes protocol sequences
- Denial-of-Service attack on IP address assignment
- 2. Man-in-the-Middle attack on IP address assignment

» IDS

- » full access to the network traffic
- » learning vs. attack detection

Intrusion Detection for Industrial Control Systems (3/4)

Learning normal system behavior

Message type	Event Source	Destination
1	IO-C	IO-D
2	IO-D	IO-C
3.	IO-C	IO-D
5	IO-D	IO-D
6.	IO-D	IO-C
5	IO-C	IO-D
6	IO-D	IO-C
5	IO-C	IO-D

Model of normality Set of 2-grams

(1,2) (2,3) (3,4) (4,...) (...,5) (5,6) (6,5) (2,...)

Intrusion Detection for Industrial Control Systems (4/4)

Attack detection

Message type	Event Source	Destination
1	IO-C	IO-D
2	IO-D	IO-C
2	IO-D	IO-C
5	IO-C	IO-D
6	IO-D	IO-C
5	IO-C	IO-D
6	IO-D	IO-C

Model of normality
Set of 2-grams

(1,2) (2,3) (3,4) (4,...) (...,5) (5,6) (6,5) (2,...)

Final Remarks

» Security issues within ICS networks

- » lack of measures to provide authorized communication + ensuring data integrity
- » Intrusion Detection is a promising measure to enhance ICS security

» Simulation-based PROFINET IO network

» problem: missing/restricted access to real ICS

- » traffic generation
 - » regular protocol sequences: learning normal behavior
 - » attack simulation:
 IDS evaluation
- » IDS integration

Thank you for your attention!

Questions? Remarks?